

Fig. 1. Stereoscopic view of (Z)- $\alpha$ , $\beta$ -dimethoxystilbene.

The atomic parameters are given in Table 1.\* Bond lengths and bond angles are listed in Table 2. Fig. 1 is a stereoscopic view of the compound, showing the numbering of the atoms (*PLUTO*; Motherwell & Clegg, 1978).

**Related literature.** The compound has been synthetized following the procedure described by Merz & Tomahogh (1977). The structures of the sulfur analogues (E)- and (Z)-1,2-bis(methylthio)-1,2diphenylethylene (Adiwidjaja, Kistenbrugger & Voss, 1981) and those of *cis*- and *trans*-1,2-bis(methoxyethoxy)-1,2-diphenylethylene (Soumillion, Weiler, De Man, Touillaux, Declercq & Tinant, 1989) have been reported. From dipole-moment measurements, Lumbroso, Lund & Simonet (1974) have discussed the *cis*-*trans* configurations and the conformation of the methoxy and phenyl groups in the title compound.

#### References

- ADIWIDJAJA, G., KISTENBRUGGER, L. & VOSS, J. (1981). J. Chem. Res. (S), pp. 1227-1228.
- LUMBROSO, H., LUND, H. & SIMONET, J. (1974). C. R. Acad. Sci. Sér. C, 278, 1449–1452.
- MERZ, A. & TOMAHOGH, R. (1977). J. Chem. Res. (M), pp. 3070–3084.
- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. SHELDRICK, C. KRÜGER & R. GODDARD, pp. 175–189. Oxford Univ. Press.
- SOUMILLION, J. PH., WEILER, J., DE MAN, X., TOUILLAUX, R., DECLERCQ, J.-P. & TINANT, B. (1989). Tetrahedron Lett. 30, 4509–4512.

Acta Cryst. (1992). C48, 2251-2253

# Structure of Dimethyl Ceanothate

BY K. SEKAR AND S. PARTHASARATHY\*

Department of Crystallography and Biophysics,<sup>†</sup> University of Madras, Guindy Campus, Madras - 600 025, India

## AND A. B. KUNDU AND B. R. BARIK

Chemical Research Unit, CCRAS, Department of Chemistry, University College of Science, 92 A.P.C. Road, Calcutta - 700 009, India

(Received 10 January 1992; accepted 13 April 1992)

Abstract. Methyl 2 $\alpha$ -methoxycarbonyl-3 $\beta$ -hydroxy-A(1)-norlup-20(29)-en-28-oate, C<sub>32</sub>H<sub>50</sub>O<sub>5</sub>, M<sub>r</sub> = 514.7, orthorhombic, P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub>, a = 9.795 (2), b = 16.452 (2), c = 18.835 (2) Å, V = 3035.2 (2) Å<sup>3</sup>, Z = 4,  $D_x = 1.13$  g cm<sup>-3</sup>,  $\lambda$ (Cu K $\alpha$ ) = 1.5418 Å,  $\mu =$ 

\* Author for correspondence.

† Contribution No. 792.

0108-2701/92/122251-03\$06.00

5.52 cm<sup>-1</sup>, F(000) = 1128, T = 295 K, R = 0.049, wR = 0.057 for 2481 unique observed reflections  $[I > 2\sigma(I)]$ . Ring A is in a half-chair conformation and ring E is in an envelope conformation. Rings B, C and D have slightly distorted chair conformations with mean torsion angles of 54.8 (4), 58.4 (4) and 55.5 (4)°, respectively. The molecule is stabilized by van der Waals forces.

© 1992 International Union of Crystallography

<sup>\*</sup> Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55362 (14 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HA0102]

# Table 1. Atomic coordinates $(\times 10^4)$ and equivalent<br/>isotropic thermal parameters $(\mathring{A}^2 \times 10^3)$ for non-H<br/>atoms with e.s.d.'s in parenthesesTable 2. Bond lengths $(\mathring{A})$ , bond angles $(^\circ)$ and ring<br/>torsion angles $(^\circ)$ $(\mathring{A}^2 \times 10^3)$ $(\mathring{A}^2 \times 10^3)$

| atoms with e.s.a. s in parentneses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                                               |                                   |                              | C1—C2                                   | 1.505 (5)                                                     | C12—C13 1                                                                       | .528 (5)                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------|-----------------------------------|------------------------------|-----------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------|
| Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $U_{\rm eq} = \frac{x}{1670}$ (4) | $(U_{11} + U_{22} + U_{22})$<br>y<br>3655 (2) | Z <sub>33</sub> )/3.<br>- 486 (2) | U <sub>eq</sub><br>51 (1)    | C1036<br>C1033<br>C2C3<br>C2C10<br>C3C4 | 1.197 (5)<br>1.330 (5)<br>1.569 (5)<br>1.564 (5)<br>1.572 (6) | C13-C14 1<br>C13-C18 1<br>C14-C15 1<br>C14-C27 1<br>C15-C16 1                   | 573 (4)<br>532 (4)<br>557 (5)<br>551 (5)<br>526 (6) |
| C2<br>C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2837 (4)<br>3765 (4)              | 4184 (2)<br>4430 (3)                          | -248 (2)<br>-892 (2)              | 47 (1)<br>53 (1)             | C3035<br>C4C23                          | 1.432 (5)<br>1.530 (6)                                        | C16C17 1<br>C17C18 1                                                            | 529 (5)<br>526 (5)                                  |
| C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3418 (4)<br>2177 (4)              | 5338 (2)<br>5517 (2)                          | -1080(2)<br>-611(2)               | 55 (1)<br>45 (1)             | C4—C24<br>C4—C5                         | 1.536 (5)<br>1.531 (5)                                        | C17—C28 1<br>C17—C22 1                                                          | 523 (5)<br>539 (5)                                  |
| C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 331 (4)                           | 6373 (2)<br>6349 (2)                          | -457 (2)<br>-91 (2)               | 58 (1)<br>55 (1)             | C5C10<br>C5C6                           | 1.541 (5)<br>1.503 (5)                                        | C18-C19 1<br>C19-C21 1                                                          | 549 (4)<br>574 (6)                                  |
| C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 290 (3)<br>966 (3)                | 5846 (2)<br>4989 (2)                          | 603 (2)<br>465 (1)                | 39 (1)<br>34 (1)             | C6—C7<br>C7—C8                          | 1.534 (6)<br>1.548 (5)                                        | C19-C20 1<br>C20-C29 1                                                          | 509 (5)<br>335 (10)                                 |
| C10<br>C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2357 (3)<br>958 (4)               | 5013 (2)<br>4471 (2)                          | 72 (2)<br>1140 (2)                | 39 (1)<br>45 (1)             | C8—C9<br>C8—C26                         | 1.579 (5)<br>1.545 (5)                                        | C20C30 1<br>C21C22 1                                                            | 379 (10)<br>524 (6)                                 |
| C12<br>C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 469 (4)<br>1204 (3)               | 4331 (2)<br>5135 (2)                          | 1405 (2)<br>1541 (1)              | 45 (1)<br>37 (1)             | C8-C14                                  | 1.595 (4)                                                     | C28-O37 1                                                                       | 199 (5)<br>227 (5)                                  |
| C14<br>C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1240 (3)<br>- 1996 (4)          | 5677 (2)<br>6488 (2)                          | 853 (2)<br>1017 (2)               | 38 (1)<br>48 (1)             | C9-C11                                  | 1.531 (4)                                                     | O31-C32 1                                                                       | 450 (7)                                             |
| C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3368(4)<br>-3223(3)              | 6392 (2)<br>5880 (2)                          | 1391 (2)                          | 50 (1)                       | C10C25                                  | 1.548 (5)                                                     | 033                                                                             | 440 (9)                                             |
| C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2633(3)<br>-2858(4)              | 5053 (2)                                      | 1864 (1)                          | 43 (1)<br>39 (1)             |                                         |                                                               |                                                                                 |                                                     |
| C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3155 (5)                         | 3610 (2)                                      | 2316 (2)<br>2372 (2)              | 48 (1)<br>65 (1)             | C2-C1-O33<br>C2-C1-O33                  | 122.6 (4)<br>111.5 (3)                                        | C14—C13—C18<br>C14—C13—C12                                                      | 110.9 (2)<br>111.3 (3)                              |
| C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 4533 (4)                        | 4906 (3)<br>5630 (2)                          | 2910 (2)<br>2459 (2)              | 67 (1)<br>57 (1)             | O36C1C2<br>C1C2C3                       | 125.9 (3)<br>111.0 (3)                                        | C9-C11-C12<br>C13-C14-C27                                                       | 111.5 (3)<br>110.6 (3)                              |
| C23<br>C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4612 (5)<br>3010 (5)              | 5925 (3)<br>5368 (3)                          | - 973 (3)<br>- 1867 (2)           | 82 (2)<br>78 (2)             | C10C2C3<br>C10C2C1                      | 104.3 (3)<br>113.0 (3)                                        | C13-C14-C15<br>C13-C14-C8                                                       | 109.5 (3)<br>108.7 (2)                              |
| C25<br>C26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3550 (4)<br>1057 (4)              | 5286 (3)<br>6331 (2)                          | 555 (2)<br>1181 (2)               | 56 (1)<br>57 (1)             | O35—C3—C2<br>C4—C3—O35                  | 107.1 (3)<br>114.5 (4)                                        | C15—C14—C27<br>C15—C14—C8                                                       | 105.8 (3)<br>110.9 (3)                              |
| C27<br>C28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 2083 (4)<br>- 2362 (4)          | 5256 (2)<br>6323 (2)                          | 261 (2)<br>2615 (2)               | 48 (1)<br>55 (1)             | C4-C3-C2<br>C23-C4-C24                  | 107.1 (3)<br>107.8 (3)                                        | C8-C14-C27<br>C14-C15-C16                                                       | 111.5 (3)<br>115.0 (3)                              |
| C29<br>C30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 2695 (12)<br>- 4012 (12)        | 3049 (4)<br>3392 (5)                          | 2825 (6)<br>1823 (4)              | 175 (5)<br>178 (4)           | C23—C4—C3<br>C24—C4—C3                  | 113.9 (3)<br>107.7 (3)                                        | C16-C17-C18<br>C16-C17-C28                                                      | 108.8 (3)                                           |
| O31<br>C32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 2693 (5)<br>- 2041 (9)          | 7104 (2)<br>7586 (3)                          | 2648 (2)<br>3196 (3)              | 95 (1)<br>130 (3)            | C23—C4—C5<br>C24—C4—C5                  | 114.2 (3)<br>110 1 (3)                                        | C16-C17-C22<br>C18-C17-C28                                                      | 118.1 (3)                                           |
| O33<br>C34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1395 (4)<br>173 (9)               | 3079 (2)<br>2605 (4)                          | -12(2)<br>-130(3)                 | 82 (2)<br>123 (3)            | C3-C4-C5<br>C4-C5-C10                   | 103.0 (3)                                                     | C18-C17-C22<br>C22-C17-C28                                                      | 101.4 (3)                                           |
| O35<br>O36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5141 (3)<br>1023 (4)              | 4295 (2)<br>3739 (2)                          | - 680 (2)<br>1020 (1)             | 75 (1)<br>76 (1)             | C4C5C6<br>C6C5C10                       | 121.6 (3)                                                     | C17 - C18 - C19<br>C17 - C18 - C13                                              | 106.2 (3)                                           |
| O37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1524 (3)                         | 6027 (2)                                      | 3000 (Ì)                          | 73 (1)                       | C5-C6-C7<br>C6-C7-C8                    | 108.9 (3)                                                     | C13-C18-C19<br>C18-C19-C20                                                      | 119.8 (3)                                           |
| Francisco de la construcción de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                                               |                                   |                              | C7-C8-C9<br>C7-C8-C9                    | 109.1 (3)                                                     | C18-C19-C21<br>C20-C19-C21                                                      | 103.2 (3)                                           |
| Experimental. Ceanothic acid was isolated (Kundu,<br>Barik Mondal Dev & Banerij 1989) from both the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                                               |                                   |                              | C7-C8-C14<br>C26-C8-C14                 | 111.5 (3)                                                     | C19-C20-C29<br>C19-C20-C29                                                      | 119.1 (5)                                           |
| bark and the roots of Zizyphus jujuba as an inter-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                                               |                                   |                              | C8-C9-C10<br>C10-C9-C11                 | 115.1 (3)                                                     | $C_{1}$ $C_{20}$ $C_{30}$ $C_{20}$ $C_{20}$ $C_{29}$ $C_{21}$ $C_{22}$ $C_{17}$ | 120.2 (4)<br>120.3 (6)                              |
| mediate product while extracting a pentacyclic tri-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                                               |                                   |                              | C9-C10-C25                              | 113.0 (3)                                                     | C17 - C28 - O37<br>C17 - C28 - O31                                              | 126.7 (3)                                           |
| terpenoid zizyberanalic acid. It was then methylated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                               |                                   |                              | C9-C10-C2<br>C5-C10-C25                 | 115.2 (3)                                                     | $O_{31} - C_{28} - O_{37}$                                                      | 122.2 (3)                                           |
| with ethereal $CH_2N_2$ to yield the title compound.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                               |                                   |                              | C5-C10-C2                               | 100.5 (3)                                                     | C1-033-C34                                                                      | 117.1 (4)                                           |
| ture at room temperature. Data were collected for a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                                               |                                   |                              | C15-C16-C17                             | 111.0 (3)                                                     | C8-C9-C11                                                                       | 111.2 (3)                                           |
| colourless transparent crystal $(0.30 \times 0.30 \times 0.3$ |                                   |                                               |                                   |                              | C5-C4-C23                               | 114.2 (3)                                                     | C19-C21-C22                                                                     | 106.8 (3)                                           |
| 0.35 mm) with an Enraf-Nonius CAD-4 diffractom-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                               |                                   |                              |                                         |                                                               |                                                                                 |                                                     |
| eter using NI-nitered Cu K $\alpha$ radiation. Unit-cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |                                               |                                   |                              | Ring A<br>C2C3C4C5                      | - 8.0 (4)                                                     | Ring D<br>C13-C14-C15-C16                                                       | -49.1 (4)                                           |
| sis of 25 reflections with $25 \le 2\theta \le 35^\circ$ . Intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                               |                                   |                              | C3-C4-C5-C10<br>C4-C5-C10C2             | 32.3 (4)<br>- 43.7 (3)                                        | C14-C15-C16-C17<br>C15-C16-C17-C18                                              | 53.5 (4)<br>- 57.8 (4)                              |
| data were collected with the $\omega$ -2 $\theta$ scan technique,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                               |                                   | C5-C10C2C3<br>C10C2C3C4      | 36.8 (3)<br>- 18.2 (4)                  | C16-C17-C18-C13<br>C17-C18-C13-C14                            | 62.2(3)<br>- 59.5(3)                                                            |                                                     |
| 2986 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | inique reflectior                 | ns (h 0 to 11,                                | k 0 to 20, 10                     | ) to 22)                     |                                         |                                                               | C18-C13-C14-C15                                                                 | 50.8 (3)                                            |
| up to $2\theta = 140^{\circ}$ were measured, of which 2481 were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                               |                                   | Ring B                       |                                         | Ding F                                                        |                                                                                 |                                                     |
| collection three standard reflections monitored after                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                                               |                                   | C5-C6-C7-C8-C9               | 57.3 (4)<br>- 49.2 (4)                  | C17-C18-C19-C21                                               | 23.8 (3)                                                                        |                                                     |
| every 2 h of X-ray exposure, indicated no decay over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                               |                                   | C7-C8-C9-C10<br>C8-C9-C10-C5 | 47.5 (3)<br>52.6 (3)                    | C18-C19-C21-C22<br>C19-C21-C22-C17                            | 2.3 (4)<br>- 27.2 (4)                                                           |                                                     |
| the full 34 h period. The intensity data were correc-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                                               |                                   |                              | C9-C10-C5-C6<br>C10-C5-C6-C7            | 59.9 (4)<br>-62.2 (4)                                         | C21-C22-C17-C18<br>C22-C17-C18-C19                                              | 41.4 (3)<br>- 40.6 (3)                              |
| ted for Lorentz, polarization and absorption effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                               |                                   |                              |                                         |                                                               |                                                                                 |                                                     |
| ( $\psi$ -scan methods, transmission-factor range 0.951–<br>(0.996) The structure was solved by direct methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |                                               |                                   |                              | Ring $C$                                | 59.6 (4)                                                      |                                                                                 |                                                     |
| using SHELXS86 (Sheldrick, 1990) and refined on F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                               |                                   |                              | C9-C11-C12-C12                          | 3 - 57.0 (4)                                                  |                                                                                 |                                                     |
| by weighted full-matrix least squares on a Micro-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                               |                                   |                              | C12-C13-C14-C2                          | 8 - 58.8 (3)                                                  |                                                                                 |                                                     |
| VAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | II computer wi                    | th SHELX7                                     | 6 (Sheldrick,                     | 1976).                       | C14C8C9C11                              | - 59.8 (3)                                                    |                                                                                 |                                                     |

38 H atoms were located from a  $\Delta \rho$  map while others were fixed from stereochemical considerations. All the H atoms were refined with isotropic displacement parameters in the final cycles. Final maximum  $\Delta/\sigma =$ 0.08 and maximum and minimum heights in final  $\Delta \rho$ maps were 0.19 and  $-0.26 \text{ e} \text{ Å}^{-3}$ , respectively. Refinement of 534 parameters with weights given by  $w = [\sigma^2(F) + 0.004896(F_{\alpha}^2)]^{-1}$  converged at R =0.049, wR = 0.057 and S = 0.97. Atomic scattering factors were those of SHELX76 taken from International Tables for X-ray Crystallography (1974, Vol. IV). Final positional and displacement parameters are listed in Table 1\* and the bond lengths and angles obtained using PARST (Nardelli, 1983) are in Table 2. A PLUTO (Motherwell & Clegg, 1978) drawing of the molecule with atom numbering and ring labelling is presented in Fig. 1.

**Related literature.** Several C—C bonds and C—C—C angles deviate by more than  $3\sigma$  from their respective expected values. Similar features are also observed in the fused ring systems with axial substitutions by bulky methyl groups (Hall & Maslen, 1965; Gzella, Zaprutko, Wrzeciono & Jaskólski, 1987). The C20—C30 bond distance is unusually short as in the isopropyl side chain of methyl melaleucate iodoacetate (Hall & Maslen, 1965).



Fig. 1. Molecular structure of the title compound with ring labelling.

Thanks are due to the Council of Scientific and Industrial Research, India, for the award of a Senior Research Fellowship to KS.

### References

- GZELLA, A., ZAPRUTKO, L., WRZECIONO, U. & JASKÓLSKI, M. (1987). Acta Cryst. C43, 759-762.
- Hall, S. R. & Maslen, E. N. (1965). Acta Cryst. 18, 265–279.
- KUNDU, A. B., BARIK, B. R., MONDAL, D. N., DEY, A. K. & BANERJI, A. (1989). *Phytochemistry*, 28, 3155-3158.
- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- NARDELLI, M. (1983). Comput. Chem. 7, 95-98.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1990). Acta Cryst. A46, 467-473.

<sup>\*</sup> Lists of structure factors, anisotropic displacement parameters, H-atom parameters and least-squares-planes calculations have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55378 (24 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AB1003]